DETERMINATION OF THE LOCAL ANGULAR RADIATION
COEFFICIENTS IN CERTAIN TWO-BODY SYSTEMS

V. I. Sokurenko, V., K. Shcherbakov, UDC 536.3
and Yu, P, Shcherbakoy

A method is shown and formulas are derived by which local angular radiation coefficients can
be determined in certain two-body systems where the configuration is arbitrary but one of the

bodies is either a cylinder or a rectangular plate,

For a study and a numerical calculation of local energy characteristics in the case of radiative heat
transfer, one must know the local angular radiation coefficients in the system. Formulas, graphs, and
nomograms for finding the values of these coefficients are only available for a few combinations of body

(surface) pairs [1, 2].

In this article the authors outline a method of determining the local angular radiation coefficients
which is applicable to a two-body radiation system where one of the bodies is either a cylinder or a flat

rectangular plate,

Calculations show that the angular coefficients for a cylinder or a plate radiating fo other surfaces
remain almost the same over a wide range of cylinder diameters or plate widths. On the other hand, the
angular coefficients for a cylinder or a plate irradiated from another source are proportional to their re-
spective transverse dimension. In view of this, it is possible to consider now a cylinder or a plate with
an infinitesimally small transverse dimension, i.e,, to treat each as a "radiating line" [3].

On the basis of certain concepts concerning a radiation field [4], the local angular coefficient ¢y, of
radiation from an arbitrary elementary surface 2 (Fig. 1) located in the radiation field of body 1 to that
body 1 will be defined as the scalar product between the unit radiation vector @ and the unit normal vector
nY at the center of that area 2:

Py = (9 -1, $Y
where ¢= E/E;nt. '
In order to derive analytical expressions for the local
angular coefficients which would take into account the relative
% configuration between linear radiators and the area elements
of an arbitrary surface, we introduce the rectangular system
of coordinates shown in Fig. 1. The axis of the linear radia-
tor 1 will be the y-axis and the photometric plane of this ra-
diator will be the y0z plane of the coordinate system, The
end points y, and y, of this linear radiator are located at ar-

Y2
7 bitrary distances from the origin of coordinates.
Let the equation of the irradiated surface in this system
e of coordinates be
Flxy2)=0 Mixyz2)
F(x) yy Z) = 0 (2)

Fig. 1. Schematic diagram of the rel-
ative configuration between a linear ra-
diator and an irradiated surface,
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The unitnormal vector n® at point M(x, y, z) of the elementary
surface 2 is then defined in terms of direction cosines as follows:
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TABLE 1. Formulas for Calculating the Local Angular Radiation
Coefficients ¢y in Certain Two-Body (Surface) Systems

Linear radiator parallel to plate

Pog = [F @) — 7 (v |y

sa
n (% 2)
for a cylinder s=4d, z=a,

t]z)

for a plate s= W

Linear radiator perpendicular to plate

——
0
Y p " S
, R Pg = 20 | sin® yy — sin® vy {,
Lo Mxaz2)
for a cylinder s=d,
Y
e for a plate s = tsinf,
g z

Linear radiator parallel to cylinder

fora cylinder s=4d, b=0,

for a plate
la —Rcosa|
§ = — :
Va*+ 824 RT—2R (hsina+-acosa)

) _s{bsina + acosa — R)
T m @t 4 6 + R* — 2R (b sina + a cos a)]

() — F (o) I-

Linear radiator skewed with cylinder at a 90° angie

for a cylinder s=d, b=0,

for a plate

tla—Rcosal

V %2 (@ — R cos a)?

Por=on V #% 4+ (@ — Rcos a)? ' x? -~ (@ — R cos a)?

s {sincxisin?y{)~sinzyg|§ . 2(@a—Rcosa) cosa | f(y5) — f{vg) ! }




TABLE 1 (continued)

Linear radiator inside cylindrical cavity

b Z yl
~—7 L) fora cylinder s=d, 6=0,
2 7 ;
(x4 2)~ yi %

A
Ay for a plate

£ A 75 . {1Rcosa + aj

u‘ ik y T VEFEFRF2R(bsina facosa)

s (bsina 4 a cosa 4+ R)

Pu= T R 2R (bsina + acos )] {F (vo) — F (yo) |-
n0= cosal - cosa,j + cos &k, (3)
where
F
cos @, = Om
nl“l/ 9_11)2_1_ ﬁ_ 2+ ﬂ:_)z 4 (4)
( 0x | ( dy 8z
(m=1x, y, 2).

The unit radiation vector ¢ at point M(x, y, z) can also be written in terms of components parallel to
the orthogonals i, j, k:
P =@l - B + Q. (5)
Inserting (3) and (5) into (1), we obtain the following expression for the local angular radiation coef-
ficient:
Py = Py COS O, -+ @, COSC, + P, COS L, (6)

The values of ¢, Pys @y can be found by an appllCathn of the general principles of field plotting to
the case of radiation from a line source [3]. Vector ¢ at point M(x, y, z) will be tentatively directed to-
ward the radiator. Then, inasmuch as the superposition property applies to radiant fluxes [1], the ex-
pressions for ¢, @y @ can be represented as functions of the coordinates and of an "apparent® trans-
verse dimension s of the radiator surface (cylinder or plate):

Px = m? I ) —F i),

| sin®y, —sin® v | &, (M

Py =

2nr,

cpz=—n—zr%]f(va)—f(vg)l,

where
Vo ®
%:arctgy%_—y;
Fo (9)
y(‘;:arctg———yz_y-;
o
) Foo  ooon 1 h—y . _G—yn .
. Uoow e om 1 Bo—y , W—yr, 1.
Fw) = 7(27”51“2"")“7%% o AT G
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Fig. 2. Nomograms for determining the local angular coefficients

of radiation from the inside surface of a cylindrical cavity to a cyl-
inder inside it,

(g, — y* (= )k
2y —y? g — e

sin® ) — sin?y, = (11)

Here ¢| = 1 and has the same sign as whichever difference (y;—y) or (y,—y) is larger in magnitude,

If the radiator is a cylindrical surface with a small diameter d, then s = d in (7). If a narrow rec-
tangular plate of width t replaces the linear radiator, then in (7)

The values of angles v, and v} as well as their respective functions f(y}) and f(v{) are determined from
Egs. (9)-(10) with due consideration of the signs of y, y;, and y,.

Generally, the area element 2 of a surface F(x, y, z) = 0 may be irradiated not from the entire lin-
ear radiator but from a part of it which, for nonconcave surface, lies in the half-space separated by the
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Fig. 3. Mean angular coefficient ¢ of radiation from the in-
side surface of a cylindrical cavity to a cylinder of the same
length inside it, as a function of the relative displacement be-
tween axes a/R and for various relative lengths I/R.

Fig. 4. Error § (%) in calculating the local angular coefficients
(solid lines) and the mean angular coefficients (dashed lines) of
radiation from the inside surface of a cylindrical cavity to a
concentric cylinder inside it, as a function of the geometrical
characteristics of the system (d/R, l(y5—y)/R|, I/R).

plane tangent to the irradiated surface at the center of its area element 2. The coordinate of the "appar-
ent" end y, , of the linear radiator is the point where the y-axis pierces the plane tangent to the irradiated
surface at M(x, y, z):

1 joF OF oF
+—a‘z—2) - (12)

= — X -
1,0 oF ( ox + 3y Y
%y
Into Egs. (9)-(11) belong the values of y, and y, found from Eq. (12).

The formulas in Table 1 for calculating the local angular radiation coefficients have been derived by
the preceding method for certain relative configurations between a linear radiator and an irradiated sur-
face. The formulas are sufficiently simple and, therefore, suitable for practical use over a wide range of
geometries, A comparison between the values obtained for these coefficients by the formulas in Table 1
and by some exact relations [5-7] shows that, already when the transverse dimension of the linear radiator
is down to one fifth of its length and to one half of its distance from the irradiated surface, the error does
not exceed 7-10%. The calculation error decreases fast as the transverse dimension becomes still smaller,

The mean (integral) angular radiation coefficients for these particular systems of bodies are cal-
culated by integrating the local angular coefficients over the surface F(x, y, z) = 0.

Example. Let us consider a system of two cylindrical bodies, one cylinder with a diameter d lo-
cated inside the cavity of the other cylinder with a diameter 2R. Let their axes be parallel but, generally,
not coincident (Table 1, line 5). Let the distance between the axes be ¢. The inner cylinder 1 will be
treated as a linear radiator along the y-axis with the endpoints y = y; = 0 and y = y,.

The equation of the outer cylinder surface is in our rectangular system of coordinates:

¥4 (z—af —R*=0. (13)

The rectangular coordinates of a point onthe surface of the outer cylinder can be defined in terms of
cylindrical coordinates whose axis coincides with the y'-axis and whose angular coordinate o begins at the
y0z plane in the counterclockwise direction:
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x=Rsina, y=y', z=~Rcosa+ta. (19

Having determined the direction cosines according to (4) and having inserted their values into (6) with
(7) taken into account, we obtain the following expression for local angular coefficients of radiation ¢y
from cylindrical surface 2 to cylinder 1:

d(R+acosc) F o) —F G-

n(a® + R* + 2Ra cos o) (15)

Py =
When @ = 0 and the inside eylinder is infinitely long, then formula (15) yields the well known exact expres~
sion for the local angular radiation coefficient [2], which in this case is equal to the mean angular radia-
tion coefficient and is determined by the ratio of diameters:

Py = d/2R. (16)

Nomograms of Eq.(15) have been plotted in Fig, 2 for determining the local angular coefficients of
radiation from the inside surface of a cylindrical cavity to a cylinder located inside, as a function of the
dimensionless coordinates |(y,~y)/R| and [y,—y)/R|, of the relative dimensions d/R, a/R, and of angle a.
The values of g, are calculated as sums or differences of the angular coefficients ¢, and ¢f for the seg-
ments y,—y and y,—y of the inner cylinder:

d [ @y Py )
_ 2 . 17
‘le‘R(d/R—d/R (7)
Thus, when o = 150°, /R = 0.3, (y5—y)/R = 1.2, (y;—y}/R = 0.5, and d/R = 0.1, then ¢ = 0.1(0.297
+0.210) = 0.0507.

The mean angular coefficients qoﬁl of radiation from a cylindrical cavity to an inner cylinder were de-
termined by numerically integrating ¢, over the cavity surface. The results of calculations by this meth-
od are shown in Fig, 3, as functions of the relative displacement between axes a/R and of the relative cyl-
inder length I/R.

The difference between the values of angular coefficients calculated by our method and by exact for-
mulas [6, 7] respectively is shown in Fig. 4 for the given example but with coaxial cylinders (@ = 9). Ac-
cording to the graphs, this difference is insignificant over a wide range of radiator geometries and the re-
sults may be used for a wide range of practical engineering applications.

NOTATION
E, ‘ is the radiation vector of body 1;
E;n is the intrinsic radiation intensity of body 1;
Pxr Pys Pg are the components of the geometrical radiation vector along rectangular coordinates;
T, = Vx? + 22 is the shortest distance from point M(x, y, z) to linear radiator;
Yo Yo are the angles subtending the two segments of the linear radiator from point M(x, y, z)
on area element 2 of irradiated surface;
l is the length of the cylinders;
X, ¥, Z are the space coordinates of point M,
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